Caso práctico: Carga y descarga visual con LED

Prototipo de Carga y descarga visual con LED (Maker Style)

Nivel: Básico – Observar el almacenamiento de energía en un condensador electrolítico mediante el desvanecimiento de un LED.

Objetivo y caso de uso

Construirás un circuito simple donde un condensador actúa como un depósito temporal de energía, manteniendo un LED iluminado brevemente después de desconectar la fuente de alimentación.

  • Por qué es útil:

    • Demuestra cómo los condensadores almacenan y liberan energía eléctrica.
    • Simula el efecto de «suavizado» utilizado en adaptadores de corriente para mantener un voltaje constante.
    • Visualiza la constante de tiempo RC (la relación entre resistencia, capacitancia y tiempo).
    • Introduce el concepto de «tiempo de mantenimiento» (hold-up time) en fallos de alimentación.
  • Resultado esperado:

    • Interruptor ENCENDIDO: El LED se enciende inmediatamente.
    • Interruptor APAGADO: El LED no se apaga instantáneamente; en cambio, se desvanece lentamente durante varios segundos.
    • Visual: Una transición suave de luz brillante a oscuridad.
    • Audiencia: Estudiantes y aficionados interesados en el comportamiento de componentes básicos.

Materiales

  • V1: Batería de 9 V CC o fuente de alimentación, función: fuente de energía principal.
  • S1: Interruptor de palanca SPST o pulsador, función: controla la conexión a la fuente de alimentación.
  • C1: Condensador electrolítico de 2200 µF (16 V o superior), función: depósito de almacenamiento de energía.
  • R1: Resistencia de 470 Ω, función: limitación de corriente del LED y control del tiempo de descarga.
  • D1: LED rojo, función: indicador visual del flujo de corriente y carga almacenada.

Guía de conexionado

Utiliza las siguientes conexiones de nodos explícitas para construir el circuito. La referencia de tierra estándar es el nodo 0.

  • Alimentación e Interruptor:

    • Conecta el terminal Positivo de V1 al nodo VCC.
    • Conecta el terminal Negativo de V1 al nodo 0 (GND).
    • Conecta un lado del interruptor S1 al nodo VCC.
    • Conecta el otro lado del interruptor S1 al nodo V_CAP.
  • Condensador (El Tanque):

    • Conecta el Positivo (patilla larga) de C1 al nodo V_CAP.
    • Conecta el Negativo (patilla corta/franja) de C1 al nodo 0.
  • LED y Resistencia (La Carga):

    • Conecta la resistencia R1 entre el nodo V_CAP y el nodo V_LED.
    • Conecta el Ánodo (patilla larga) de D1 al nodo V_LED.
    • Conecta el Cátodo (patilla corta/lado plano) de D1 al nodo 0.

Diagrama de bloques conceptual

Conceptual block diagram — RC Charge/Discharge Circuit
Lectura rápida: entradas → bloque principal → salida (actuador o medida). Resume el esquemático ASCII de la siguiente sección.

Esquemático

Title: Practical case: Visual Charge and Discharge with LED

      [ INPUT / CONTROL ]               [ STORAGE / BUFFER ]               [ OUTPUT / LOAD ]

                                            (Node V_CAP)
    [ 9 V Battery ] --(+)--> [ Switch S1 ] -------+-------> [ Resistor R1 ] --> [ LED D1 ] --> GND
                                                 |
                                                 |
                                                 v
                                          [ Capacitor C1 ]
                                          (   2200 uF    )
                                                 |
                                                GND
Esquema Eléctrico

Mediciones y pruebas

  1. Estado inicial: Asegúrate de que S1 esté Abierto (Apagado). El LED debe estar oscuro.
  2. Fase de carga: Cierra S1. Observa que el LED se enciende al instante. El condensador C1 se carga a aproximadamente 9 V casi inmediatamente.
  3. Fase de descarga: Abre S1.
    • Observa que el LED permanece encendido pero comienza a atenuarse.
    • Usa un cronómetro para medir el tiempo desde que se abre el interruptor hasta que el LED esté completamente oscuro.
  4. Repetir: Cambia C1 por un valor más pequeño (ej. 100 µF) y observa cómo el tiempo de desvanecimiento se vuelve mucho más corto (casi instantáneo).

Netlist SPICE y simulación

Netlist SPICE de referencia (ngspice) — extractoNetlist SPICE completo (ngspice)

* Practical case: Visual Charge and Discharge with LED

* --- Power Supply (V1) ---
* 9V DC Battery connected to VCC and GND (0)
V1 VCC 0 DC 9

* --- Switch (S1) ---
* Modeled as a Voltage-Controlled Switch to simulate a physical push-button.
* Connections: VCC to V_CAP
* The switch is controlled by the voltage at node 'CTRL'.
S1 VCC V_CAP CTRL 0 SW_PUSH

* Switch Control Source (Simulates User Interaction)
* Simulates pressing the button at T=0.1s, holding for 1s, then releasing.
* PULSE(V1 V2 TD TR TF PW PER)
V_USER_S1 CTRL 0 PULSE(0 5 0.1 1m 1m 1 5)

* Switch Model Definition
* Ron=1 ohm represents wiring/contact resistance.
.model SW_PUSH SW(Vt=2.5 Ron=1 Roff=100Meg)
* ... (truncated in public view) ...

Copia este contenido en un archivo .cir y ejecútalo con ngspice.

🔒 Parte del contenido de esta sección es premium. Con el pase de 7 días o la suscripción mensual tendrás acceso al contenido completo (materiales, conexionado, compilación detallada, validación paso a paso, troubleshooting, mejoras/variantes y checklist) y podrás descargar el pack PDF listo para imprimir.

* Practical case: Visual Charge and Discharge with LED

* --- Power Supply (V1) ---
* 9V DC Battery connected to VCC and GND (0)
V1 VCC 0 DC 9

* --- Switch (S1) ---
* Modeled as a Voltage-Controlled Switch to simulate a physical push-button.
* Connections: VCC to V_CAP
* The switch is controlled by the voltage at node 'CTRL'.
S1 VCC V_CAP CTRL 0 SW_PUSH

* Switch Control Source (Simulates User Interaction)
* Simulates pressing the button at T=0.1s, holding for 1s, then releasing.
* PULSE(V1 V2 TD TR TF PW PER)
V_USER_S1 CTRL 0 PULSE(0 5 0.1 1m 1m 1 5)

* Switch Model Definition
* Ron=1 ohm represents wiring/contact resistance.
.model SW_PUSH SW(Vt=2.5 Ron=1 Roff=100Meg)

* --- Capacitor (C1) ---
* 2200uF Energy Storage
* Connections: V_CAP to GND (0)
C1 V_CAP 0 2200u

* --- Resistor (R1) ---
* 470 Ohm Current Limiting Resistor
* Connections: V_CAP to V_LED
R1 V_CAP V_LED 470

* --- LED (D1) ---
* Red LED Indicator
* Connections: Anode (V_LED) to Cathode (0)
D1 V_LED 0 D_LED_RED

* LED Model Definition
* Generic Red LED parameters
.model D_LED_RED D(IS=1e-14 N=2 RS=10 BV=5 IBV=10u)

* --- Analysis Commands ---
* The discharge time constant (Tau) = R * C = 470 * 2200e-6 approx 1.03 seconds.
* Simulation runs for 3 seconds to visualize the charge and discharge cycle.
.tran 10m 3s

* --- Output Directives ---
* Prints the capacitor voltage, LED anode voltage, and switch control signal.
.print tran V(V_CAP) V(V_LED) V(CTRL)

.op
.end

Resultados de Simulación (Transitorio)

Resultados de Simulación (Transitorio)
Show raw data table (352 rows)
Index   time            v(v_cap)        v(v_led)        v(ctrl)
0	0.000000e+00	8.234122e-01	8.233738e-01	0.000000e+00
1	1.000000e-04	8.234122e-01	8.233738e-01	0.000000e+00
2	2.000000e-04	8.234122e-01	8.233738e-01	0.000000e+00
3	4.000000e-04	8.234122e-01	8.233738e-01	0.000000e+00
4	8.000000e-04	8.234122e-01	8.233738e-01	0.000000e+00
5	1.600000e-03	8.234122e-01	8.233738e-01	0.000000e+00
6	3.200000e-03	8.234122e-01	8.233738e-01	0.000000e+00
7	6.400000e-03	8.234122e-01	8.233738e-01	0.000000e+00
8	1.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
9	2.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
10	3.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
11	4.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
12	5.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
13	6.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
14	7.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
15	8.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
16	9.280000e-02	8.234122e-01	8.233738e-01	0.000000e+00
17	1.000000e-01	8.234122e-01	8.233738e-01	0.000000e+00
18	1.001000e-01	8.234122e-01	8.233738e-01	5.000000e-01
19	1.002600e-01	8.234122e-01	8.233738e-01	1.300000e+00
20	1.003075e-01	8.234122e-01	8.233738e-01	1.537500e+00
21	1.003906e-01	8.234122e-01	8.233738e-01	1.953125e+00
22	1.004136e-01	8.234122e-01	8.233738e-01	2.068164e+00
23	1.004539e-01	8.234122e-01	8.233738e-01	2.269482e+00
... (328 more rows) ...

Errores comunes y cómo evitarlos

  1. Polaridad del condensador invertida: Los condensadores electrolíticos están polarizados. Conectar la patilla negativa al voltaje positivo puede causar que el componente se sobrecaliente o estalle. Solución: Revisa siempre la franja en el lado del condensador; marca el pin negativo.
  2. Omitir la resistencia: Conectar el LED directamente a la fuente de 9 V (o condensador cargado) sin R1 quemará el LED instantáneamente. Solución: Asegúrate de que R1 esté en serie con D1.
  3. Usar un condensador muy pequeño: Si C1 es demasiado pequeño (ej. 100 nF), la descarga ocurrirá tan rápido que el ojo humano no podrá ver el desvanecimiento. Solución: Usa valores ≥ 1000 µF para pruebas visuales.

Solución de problemas

  • El LED nunca se enciende:
    • Comprueba si D1 está insertado al revés (Ánodo/Cátodo intercambiados).
    • Verifica que S1 esté cerrando realmente el circuito.
    • Comprueba el voltaje de la batería.
  • El LED se apaga instantáneamente (sin desvanecimiento):
    • C1 podría estar desconectado o en circuito abierto.
    • El valor de C1 es demasiado bajo.
    • El valor de R1 es demasiado alto, haciendo que el LED sea demasiado tenue para ver el final del desvanecimiento.
  • El condensador se calienta:
    • ¡Desconecta la energía inmediatamente! La polaridad de C1 probablemente esté invertida.

Posibles mejoras y extensiones

  1. Temporización variable: Reemplaza R1 con un potenciómetro de 1 kΩ en serie con una resistencia fija de 100 Ω. Ajustar el potenciómetro cambiará el tiempo de descarga y el brillo del LED.
  2. Lógica de interruptor dual: Usa un interruptor SPDT (un polo, doble tiro). Conecta el Nodo VCC a la Posición 1, el Nodo 0 a la Posición 2, y el pin Común a la red Condensador/Resistencia. Esto te permite «descargar» activamente la energía a tierra o dejar que se desvanezca naturalmente.

Más Casos Prácticos en Prometeo.blog

Encuentra este producto y/o libros sobre este tema en Amazon

Ir a Amazon

Como afiliado de Amazon, gano con las compras que cumplan los requisitos. Si compras a través de este enlace, ayudas a mantener este proyecto.

Quiz rápido

Pregunta 1: ¿Cuál es el objetivo principal del experimento descrito?




Pregunta 2: ¿Qué componente actúa como un depósito temporal de energía en este circuito?




Pregunta 3: ¿Qué sucede con el LED cuando se apaga el interruptor?




Pregunta 4: ¿Qué concepto técnico visualiza este circuito relacionado con la resistencia y capacitancia?




Pregunta 5: ¿Cuál es la función de la resistencia R1 en el circuito?




Pregunta 6: ¿Qué efecto simula este circuito que se utiliza comúnmente en adaptadores de corriente?




Pregunta 7: ¿Qué fuente de energía principal se utiliza en el circuito (V1)?




Pregunta 8: ¿Qué término se introduce relacionado con los fallos de alimentación?




Pregunta 9: ¿Cuál es el resultado visual esperado al apagar el interruptor?




Pregunta 10: ¿Para qué audiencia está pensado principalmente este experimento?




Carlos Núñez Zorrilla
Carlos Núñez Zorrilla
Electronics & Computer Engineer

Ingeniero Superior en Electrónica de Telecomunicaciones e Ingeniero en Informática (titulaciones oficiales en España).

Sígueme:
Scroll al inicio